
Supplementary Materials of BSDF importance sampling using a diffusion
model

1 ODE EQUATION DERIVATION
We will validate ODE Equation 𝐹 (𝑥𝑡 , 𝑡) = E [𝑥1 − 𝑥0 | 𝑥𝑡 , 𝑡] purely
from probabilistic perspective. We denote the corresponding density
of 𝑥𝑡 as 𝑝𝑡 .
For clarity and coherence in our exposition, we will maintain

predefined notations for marginal probability densities, such as
𝑝 (𝑥0) = 𝑝0. However, to simplify our presentation in the following
sections, we will not assign unique notations to each joint proba-
bility distribution. Instead, we use intuitive notation; for instance,
𝑝 (𝑥0, 𝑥1) denotes the joint probability density function of 𝑥0 and 𝑥1.

Starting from the analytical form of expectation, we express the
conditional expectation as follows:

E[𝑥1 − 𝑥0 | 𝑥𝑡 , 𝑡] =
∫ +∞

−∞

∫ +∞

−∞
(𝑥1 − 𝑥0)𝑝 (𝑥0, 𝑥1 | 𝑥𝑡 , 𝑡) 𝑑𝑥0 𝑑𝑥1 .

Applying Bayes’ theorem, we obtain:

𝑝 (𝑥0, 𝑥1 | 𝑥𝑡 , 𝑡) =
𝑝 (𝑥𝑡 | 𝑥0, 𝑥1, 𝑡)𝑝 (𝑥0)𝑝 (𝑥1)

𝑝 (𝑥𝑡 | 𝑡) .

Substituting into the expectation, we derive:

E =

∫ +∞

−∞

∫ +∞

−∞
(𝑥1 − 𝑥0)

𝑝 (𝑥𝑡 | 𝑥0, 𝑥1, 𝑡)𝑝 (𝑥0)𝑝 (𝑥1)
𝑝 (𝑥𝑡 | 𝑡) 𝑑𝑥0 𝑑𝑥1 .

The function 𝑝 (𝑥𝑡 | 𝑥0, 𝑥1, 𝑡) behaves essentially as a Dirac delta
function, activated when 𝑥𝑡 = (1 − 𝑡)𝑥0 + 𝑡𝑥1. This allows us to
express 𝑥0 as 𝑥0 = 𝑥𝑡−𝑡𝑥1

1−𝑡 .
Refining further, we arrive at:

E =
1

𝑝𝑡 (𝑥𝑡 | 𝑡)

∫ +∞

−∞

1
1 − 𝑡

𝑥1 − 𝑥𝑡

1 − 𝑡
𝑝0

(𝑥𝑡 − 𝑡𝑥1
1 − 𝑡

)
𝑝1 (𝑥1) 𝑑𝑥1, (1)

where 1
1−𝑡 is the Jacobian of the change of variables. We define the

transformations:

𝑥𝑡0 = (1 − 𝑡)𝑥0 ∼
1

1 − 𝑡
𝑝0

( 𝑥0
1 − 𝑡

)
= 𝑝𝑡0,

where 𝑝𝑡0 approaches a Dirac delta function as 𝑡 → 1. Similarly, we
define

𝑥𝑡1 = 𝑡𝑥1 ∼
1
𝑡
𝑝1

(𝑥1
𝑡

)
= 𝑝𝑡1,

where 𝑝𝑡1 converges to a Dirac delta function as 𝑡 → 0. This leads to
𝑥𝑡 = 𝑥𝑡0+𝑥

𝑡
1, with the corresponding density𝑝𝑡 being the convolution

of 𝑝𝑡0 and 𝑝
𝑡
1.

The analytical expression for 𝑝𝑡 (𝑥𝑡 | 𝑡) is:

𝑝𝑡 (𝑥𝑡 | 𝑡) =
∫ +∞

−∞
𝑝𝑡0 (𝑥𝑡 − 𝑥1)𝑝𝑡1 (𝑥1) 𝑑𝑥1

=

∫ +∞

−∞

1
1 − 𝑡

𝑝0
(𝑥𝑡 − 𝑥1
1 − 𝑡

) 1
𝑡
𝑝1

(𝑥1
𝑡

)
𝑑𝑥1 .

Subsequently, we define the cumulative distribution function
(CDF) of 𝑝𝑡 as 𝑐𝑡 , given by:

𝑐𝑡 (𝑧 | 𝑡) =
∫ 𝑧

−∞

∫ +∞

−∞

1
1 − 𝑡

𝑝0
(𝑥𝑡 − 𝑥1
1 − 𝑡

) 1
𝑡
𝑝1

(𝑥1
𝑡

)
𝑑𝑥1 𝑑𝑥𝑡 .

Author’s address:

Fig. 1. Straight paths can reduce the number of sampling steps.

Knowing that 𝑑𝑥𝑡
𝑑𝑡

=
𝑑𝑥𝑡
𝑑𝑐𝑡

· 𝑑𝑐𝑡
𝑑𝑡

and recognizing that 𝑑𝑐𝑡
𝑑𝑥𝑡

is the density

function 𝑝𝑡 (𝑥𝑡 | 𝑡), we focus on deriving 𝑑𝑐𝑡
𝑑𝑡

. Setting 𝑘 =
𝑥1
𝑡 ,

we transform 𝑐𝑡 (𝑧 | 𝑡) as follows:

𝑐𝑡 (𝑧 |𝑡) =
∫ 𝑧

−∞

∫ +∞

−∞

1
1 − 𝑡

𝑝0 (
𝑥𝑡 − 𝑡𝑘

1 − 𝑡
)𝑝1 (𝑘)𝑑𝑘𝑑𝑥𝑡

Then we do another change of variables𝑚 =
𝑥𝑡−𝑡𝑘
1−𝑡 :

𝑐𝑡 (𝑧 | 𝑡) =
∫ 𝑧−𝑡𝑘

1−𝑡

−∞

∫ +∞

−∞
𝑝0 (𝑚)𝑝1 (𝑘) 𝑑𝑘 𝑑𝑚.

The derivative 𝑑 𝑧−𝑡𝑘
1−𝑡
𝑑𝑡

= 𝑘−𝑧
(1−𝑡 )2 , applying Leibniz’s rule, results in:

𝑑

𝑑𝑡
𝑐𝑡 (𝑧 | 𝑡) =

∫ +∞

−∞

𝑘 − 𝑧

(1 − 𝑡)2
𝑝0

(
𝑧 − 𝑡𝑘

1 − 𝑡

)
𝑝1 (𝑘) 𝑑𝑘.

Replacing 𝑘 with 𝑥1 and 𝑧 with 𝑥𝑡 , we conclude:
𝑑𝑥𝑡

𝑑𝑡
=
𝑑𝑥𝑡

𝑑𝑐𝑡
·𝑑𝑐𝑡
𝑑𝑡

=
1

𝑝𝑡 (𝑥𝑡 | 𝑡)

∫ +∞

−∞

𝑥1 − 𝑥𝑡

(1 − 𝑡)2
𝑝0

(𝑥𝑡 − 𝑡𝑥1
1 − 𝑡

)
𝑝1 (𝑥1) 𝑑𝑥1 .

This equation exactly matches the analytical form of expectation as
given in Equation (1). Through the proof outlined above, it is evident
that theoretically, the ODE learns by modeling a time-continuous
set of distributions 𝑝𝑡 , which is the convolution of two other time-
continuous distributions 𝑝𝑡0 and 𝑝

𝑡
1. This fundamentally aligns with

the original concept of the diffusion model, except that it replaces
noise with an arbitrary known distribution and eliminates the need
for complex Evidence Lower Bound (ELBO) calculations, directly
utilizing samples to compute expectations as the values that the
network needs to predict.

Consequently, the loss function for our diffusion model employed
is as follows:

min
𝜃
E
𝑡,𝑥𝑡







𝐷𝜃 (𝑥𝑡 , 𝑡) − E

(𝑥0,𝑥1 ) | (𝑥𝑡 ,𝑡 )
[𝑥1 − 𝑥0]






2 (2)

Where 𝐷𝜃 is a neural network, mostly represented by small MLP in
our case.

Furthermore, since the distribution 𝑝𝑡 results from a convolution,
the presence of the integral operation ensures that even if 𝑝0 or
𝑝1 are not continuous on R𝑑 , the resulting learned distribution
remains continuous on R𝑑 . This inherent characteristic limits the
diffusion model’s ability to capture discontinuities. To provide a
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Fig. 2. Evolution of 𝑥𝑡 over time 𝑡 during the learning process of mapping
between two uniform distributions using the diffusion model. The red areas
represent histograms generated from actual samples, while the blue dots
denote the pdf values for each sample. These pdf values are computed by
multiplying the base samples’ pdf values by the Jacobian derived from the
ODE.

Fig. 3. Some results for 1D distributions that satisfy the conditions pre-
sented. When the distributions are continuous, despite their complexity
and multimodality, the diffusion model can still yield accurate outcomes.

clearer illustration, consider a scenario using the diffusion model
to learn a mapping from one uniform distribution to another of the
same type.

Based on our theoretical derivation, 𝑝𝑡 evolves as the convolution
of two distributions over time. For uniform distributions, visual-
izing the shape of their convolution is straightforward because it
essentially involves the convolution of two uniform distributions,
with only the defined interval changing. Figure 2 confirms two key
conclusions previously discussed: (1) The learned distribution 𝑝𝑡 is
a convolution of two distributions, and (2) such type of diffusion
models is inherently incapable of accurately capturing discontinu-
ities. At 𝑡 = 0.5, the result is clearly the convolution of two identical
uniform distributions, which increasingly approximates the target
uniform distribution as time progresses. However, since the learning
process involves convolution, the pdf values must start and end at
zero. This requirement results in extremely sharp changes at the
boundaries, when 𝑡 comes to 1. Aside from cases where the target
distribution itself is inherently discontinuous, most scenarios we
encounter involve distributions that exhibit discontinuities at their
boundaries. This occurs because convolution is defined over the
domain R. For distributions like the uniform distribution or the
BRDFs that we plan to explore, these are theoretically continuous
within their intrinsic domains and manifest discontinuities only
at the boundaries. Figure 3 demonstrates the effectiveness of the
diffusion model when all conditions are met.

2 BIJECTION
The deterministic ODE version of the diffusion model offers at-
tractive and essential properties. For the ODE model, in theory it

Fig. 4. The one-to-one mapping learned by the diffusion model.

Fig. 5. Crossings are impossible in the ODE trajectories; if they were to
occur, it would imply that at some 𝑥𝑡 , the ODE points in two different
directions.

supports learning a bijective mapping between a simple base dis-
tribution and a complex target distribution, which is exactly what
normalizing flows achieve. The bijective property is crucial for our
use of the diffusion model for sampling.Without bijectivity, it means
the mapping we learn is not invertible, making our calculation of
the jacobian invalid. The bijective nature of the mappings used in
diffusion models has been confirmed by prior studies [??]. We pro-
vide an intuitive explanation. Given that trajectories are derived
using an ODE, and assuming a well-defined ODE where 𝑓 is a con-
tinuous function, it is impossible for these trajectories to intersect. If
intersections were possible, there would exist a set (𝑥𝑡 , 𝑡) for which
the value of 𝑓 (𝑥𝑡 , 𝑡) would not be unique, contradicting our assump-
tions. Furthermore, this non-intersection property allows us to infer
that the mapping learned by the diffusion model resembles the map-
ping used in inverse transform sampling, and it will be exactly
inverse transform sampling once you set the base distribution to
𝑈 (0, 1). Specifically, if 𝑥 ′0 evolves through the ODE to 𝑥 ′1, then it
holds that 𝑐0 (𝑥 ′0) = 𝑐1 (𝑥 ′1) = 𝑢, where 𝑐0 and 𝑐1 CDFs of 𝑝0 and 𝑝1
respectively.

3 TIME STATITICS
Our model training was conducted on a single RTX 4090 GPU, con-
sisting of three distinct stages: pretraining (10,000 epochs), diffusion
(40,000 epochs), and rectification (10,000 epochs). The majority of
computational time was consumed by the diffusion and rectification
stages. Notably, while the rectification stage demonstrated rapid
convergence, typically requiring only a few thousand epochs, its
time consumption remained substantial due to the necessity of per-
forming hundreds of diffusion model sampling steps per epoch. The
sample generation process, executed on a single-core AMD Ryzen 7
5800X CPU, required approximately 0.5 hours to produce 4.9 million
samples.
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Domain Pretrain Diffusion Rectify

Disk 16 min 41 min 1 h 22 min
Spherical 18 min 59 min 1 h 35 min

Table 1. Training times for different Domains across stages.

4 PDF EVALUATION
In the sampling process of diffusion model, each discrete step in the
ODE can be conceptualized as an invertible transform. This perspec-
tive allows us to compute the Jacobian determinant for each step,
which is then multiplied by the PDF 𝑝0 of the base samples 𝑥0. As
the ODE values are predicted using a neural network, the network’s
derivatives with respect to the input 𝑥𝑡 are easily obtainable and
then can be used to compute the Jacobian determinant. The final
PDF for 𝑥1 conditioned on𝝎𝑖 is given by 𝑝 (𝝎𝑜 |𝝎𝑖 ) = 𝐽1 ∗𝑝0 (𝑥0 |𝝎𝑖 ),
where 𝐽1 represents the accumulated Jacobian computed through
the forward ODE trajectory during the sampling process, formulated
as follows:

𝐽𝑡+ 1
𝑁

= 𝐽𝑡/
(
1 + 1

𝑁
∗
����det ( d𝐷𝜃 (𝑥𝑡 , 𝑡,𝝎𝒊)

d𝑥𝑡

)����)
for 𝑡 ranging over {0, . . . , 𝑁 }/𝑁 , with the initial value 𝐽0 set to one.
To facilitate Multiple Importance Sampling, it is also necessary

to compute the PDF for the reverse trajectory, tracing from the
BSDF 𝑝 (𝝎𝑜 | 𝝎𝑖 ) back to the base 𝑝0. The diffusion model supports
efficient the reverse process, which takes the exact same steps as the
forward one. We reverse the trajectory to obtain the base samples 𝑥0,
then we calculate the final PDF for 𝝎𝑜 conditioned on 𝝎𝑖 is given
by 𝑝 (𝝎𝑜 |𝝎𝑖 ) = 𝐽0 ∗ 𝑝0 (𝑥0 |𝝎𝑖 ). The the accumulated Jacobian 𝐽0 for
reverse case:

𝑥1−𝑡− 1
𝑁

= 𝑥1−𝑡 −
𝐷𝜃 (𝑥1−𝑡 , 1 − 𝑡,𝝎𝒊)

𝑁

𝐽1−𝑡− 1
𝑁

= 𝐽1−𝑡 ∗
(
1 − 1

𝑁
∗
����det ( d𝐷𝜃 (𝑥1−𝑡 , 1 − 𝑡,𝝎𝒊)

d𝑥1−𝑡

)����)
where 𝑡 ∈ {0, . . . , 𝑁 }/𝑁 , with 𝑥1 = 𝝎𝒐 are inputs from the BSDF, 𝐽1
initial value is one.

5 PRETRAIN NETWORK
Given different 𝝎𝒐 , the corresponding BRDF distributions can vary
significantly in shape and variance, as Fig 6 (a) shows. This prelim-
inary step proves beneficial in reducing the size of the diffusion
model’s network and the number of sampling steps required, partic-
ularly when dealing with energy-concentrated case, mainly specular
materials and around grazing angle where Fig. 6 (b) provides one
example Fig. 6 (b) provides one example. Subsequently, we use this
pretrained distribution as the base distribution for the diffusion
model, with 𝝎𝒐 serving as the target distribution, conditional on
𝝎𝒊 .
In our practical tests, using an extremely complex distribution

does not necessarily enhance the expressiveness of the diffusion
model. We experimented with a Gaussian mixture with 4 lobes as
the base distribution and found it to be less effective than using a
uniform distribution, particularly in anisotropic specular cases. We

Fig. 6. (a) PDF slices of a single material from the RGL dataset, demonstrat-
ing variations in variance and shape with different incoming directions. (b)
Comparison of the diffusion model when trained using a unit Gaussian and
a pretrained Gaussian as the base distribution respectively, with the same
sampling steps and network size.

KL Divergence

Ground Truth
         Ours
(Diffusion model)

1.00430 1.08981 0.05818
       Neusample
(Normalizing flows)

     Neusample
(Analytical lobes)

Fig. 7. PDF slices of the METAL-PAPER-COPPER material are examined
with a fixed incoming direction and a specified range for 𝜃 . The upper 𝜙
values range from [−𝜋, 𝜋 ], and the lower𝜙 values from [0, 2𝜋 ]. We compare
NeuSample’s mixture lobe and Normalizing Flows methods results with
our method. By accurately handling the periodicity on the 𝜙 channel, our
approach can effectively learn scenarios where there are high PDF values at
the boundaries.

believe this is because Gaussian lobes can become highly concen-
trated in highlights, and due to anisotropy, they may concentrate in
incorrect positions, making training more difficult. Therefore, we
opted for a small network that roughly captures the shape of the
distribution while keeping the base distribution relatively diffuse. A
Gaussian distribution proved to be a very reasonable choice.

6 PDF SLICES
We present a comprehensive comparison of PDF slices across a
broader range of materials, contrasting these with the NeuSam-
ple [Xu et al. 2023] on disk domain. Additionally, we compare these
results with our earlier diffusion model prior to implementing Re-
flow, to demonstrate the enhanced accuracy achieved with Reflow.

Periodicity in the Spherical Domain. Considering periodicity in the
spherical domain is crucial. Figure 7 illustrates a special case where
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highlights at the boundary fail to be learned properly without con-
sidering periodicity due to discontinuities. However, by accounting
for periodicity, the distribution is perceived as continuous, allowing
the highlights at the boundary to be handled correctly and produc-
ing reasonable results.
And since previous method does not support spherical domain

sampling, we only compare our method results with ground truth.
The disk domain PDF slices are from Figure 19 to Figure 24, while
spherical domain PDF slices are from Figure 25 to Figure 29.

7 RENDERING RESULTS
In this section, we present comparison between our model and
NeuSample [Xu et al. 2023] and NBRDF [Sztrajman et al. 2021] in
terms of image rendering, focusing on equal SPP (samples per pixel)
to illustrate the expressiveness of each model. Under point light
illumination, such as Figure 9, 11, indirect lighting significantly
contributes to rendering noise, overshadowing BSDF sampling ef-
fects. Conversely, in ambient lighting conditions, such as 8, 10, BSDF
sampling predominantly influences rendering outcomes. This moti-
vates our focus on soft ambient lighting scenarios for experimental
evaluation. The NBRDF model, which utilizes the isotropic Blinn-
Phong reflectance model, demonstrates satisfactory performance

for materials with low anisotropy. However, it exhibits significant
limitations when applied to highly anisotropic materials, resulting
in considerable noise artifacts in the generated results.

For diffuse materials all sampling methods effectively capture the
distribution, resulting in almost no variance.
For conductor materials that are not extremely specular the

NeuSample method begins to exhibit weaker performance around
the grazing angle. In contrast, our model remains stable.
For extremely specular materials the NeuSample method fails

completely. Although our method shows a higher occurrence of
fireflies on the disk, the spherical domain demonstrates excellent
stability and accurately captures the distribution at grazing angles.

We also observe that, overall, diffusion models within the spheri-
cal domain exhibit a slower convergence speed. This is particularly
evident for materials with strong anisotropic properties.
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Ground Truth NBRDF

Neusample Analytical Neusample Normflows

Ours Disk Ours Spherical

Fig. 8. Rendering results at 128 spp using environmental illumination on real-world captured materials.
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Ground Truth NBRDF

Neusample Analytical Neusample Normflows

Ours Disk Ours Spherical

Fig. 9. Rendering results at 128 spp using point illumination on real-world captured materials.
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Ground Truth NBRDF

Neusample Analytical Neusample Normflows

Ours Disk Ours Spherical

Fig. 10. Rendering results at 128 spp using environmental illumination on real-world captured materials.
, Vol. 1, No. 1, Article . Publication date: September 2024.
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Ground Truth NBRDF

Neusample Analytical Neusample Normflows

Ours Disk Ours Spherical

Fig. 11. Rendering results at 128 spp using point illumination on real-world captured materials.
, Vol. 1, No. 1, Article . Publication date: September 2024.
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Ground Truth Reference (128spp)

Ours (128spp) Ground Truth

Reference (128spp) Ours (128spp)

Fig. 12. Rendering results at 128 spp using environmental and point illumination on synthesized BSDFs., Vol. 1, No. 1, Article . Publication date: September 2024.
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Ground Truth NBRDF
Neusample 
Analytical

Neusample
Normflows Ours Disk Ours Spherical

Fig. 13. Rendering results at 128 spp on real-world captured materials.
, Vol. 1, No. 1, Article . Publication date: September 2024.
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Ground Truth NBRDF
Neusample 
Analytical

Neusample
Normflows Ours Disk Ours SphericalGround Truth NBRDF

Neusample 
Analytical

Neusample
Normflows Ours Disk Ours Spherical

Fig. 14. Rendering results at 128 spp on real-world captured materials.
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Ground Truth NBRDF
Neusample 
Analytical

Neusample
Normflows Ours Disk Ours SphericalGround Truth NBRDF

Neusample 
Analytical

Neusample
Normflows Ours Disk Ours Spherical

Fig. 15. Rendering results at 128 spp on real-world captured materials.
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Ground Truth NBRDF
Neusample 
Analytical

Neusample
Normflows Ours Disk Ours SphericalGround Truth NBRDF

Neusample 
Analytical

Neusample
Normflows Ours Disk Ours Spherical

Fig. 16. Rendering results at 128 spp on real-world captured materials.
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Ground Truth NBRDF
Neusample 
Analytical

Neusample
Normflows Ours Disk Ours SphericalGround Truth NBRDF

Neusample 
Analytical

Neusample
Normflows Ours Disk Ours Spherical

Fig. 17. Rendering results at 128 spp on real-world captured materials.
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Ground Truth Ref (128spp) Ours (128spp) Ground Truth Ref (128spp) Ours (128spp)

Fig. 18. Rendering results at 128 spp on synthesized BSDFs., Vol. 1, No. 1, Article . Publication date: September 2024.
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KL Divergence 0.1384 0.0146 0.0089 0.0087 0.0020

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.1647 0.0142 0.0138 0.0124 0.0051

KL Divergence 0.2266 0.0413 0.0131 0.0132 0.0114

KL Divergence 0.5499 1.1299 0.4709 0.4667 0.3997

Fig. 19. Disk domain pdf slices on METAL-PAPER-COPPER.

KL Divergence 0.0747 0.0708 0.0308 0.0247 0.0247

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.1618 0.1028 0.0581 0.0472 0.0457

KL Divergence 0.4329 0.3956 0.1442 0.1267 0.1135

KL Divergence 0.8872 0.4211 0.2909 0.2914 0.2476

Fig. 20. Disk domain pdf slices on GREEN-MALACHITE.
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KL Divergence 0.0906 0.0755 0.0062 0.0069 0.0043

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.2554 0.0855 0.0107 0.0124 0.0001g

KL Divergence 0.3830 0.2587 0.0713 0.0793 0.0531

KL Divergence 0.0350 0.1240 0.0697 0.0699 0.0431

Fig. 21. Disk domain pdf slices on MORPHO-MELENAUS.

KL Divergence 0.0199 0.0036 0.0010 0.0008 0.0006

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.0200 0.0043 0.0038 0.0035 0.0003g

KL Divergence 0.0079 0.0154 0.0007 0.0043 0.0005

KL Divergence 0.0296 0.2150 0.0013 0.0070 0.0037

Fig. 22. Disk domain pdf slices on SLIKE-BLUE.
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KL Divergence 0.0385 0.0068 0.0012 0.0014 0.0010

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.0410 0.0031 0.0006 0.0006 0.0009

KL Divergence 0.0913 0.0113 0.0007 0.0005 0.0009

KL Divergence 0.1350 0.1273 0.0292 0.0150 0.0395

Fig. 23. Disk domain pdf slices on IBIZA-SUNSET.

KL Divergence 0.0652 0.0154 0.0210 0.0193 0.0170

Reference
           Neusample 
Analytical lobes mixture

     Neusample 
Normalizing flows

            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.0582 0.0228 0.0228 0.0185 0.0152

KL Divergence 0.1402 0.0473 0.0703 0.0607 0.0338

KL Divergence 0.1463 0.1335 0.0938 0.0703 0.0594

Fig. 24. Disk domain pdf slices on BRUSHED-STEEL-SATIN-PINK.
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Reference
            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.0658 0.0625 0.0520g

KL Divergence 0.0100 0.0983 0.0969g

KL Divergence 0.1002 0.0987 0.0581

KL Divergence 0.6051 0.6206 0.6418

Fig. 25. Spherical domain pdf slices on METAL-PAPER-COPPER.
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Referencee e e ce

KL Divergence

KL Divergenceg

KL Divergence

KL Divergence

            Ours 
(4 steps after Reflow)

0.0378

0.0081

0.0202

0.0258

0.0378

0.0270

0.0371

0.0907

              Ours 
(256 steps before Reflow)

            Ours 
(8 steps after Reflow)

0.0341

0.0313

0.0356

0.1508

Fig. 26. Spherical domain pdf slices on GREEN-MALACHITE.
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Reference
            Ours 
(4 steps after Reflow)

            Ours 
(8 steps after Reflow)

              Ours 
(256 steps before Reflow)

KL Divergence 0.0119

KL Divergence 0.0081ve ge ce

KL Divergence 0.0202

0.0111

0.0081

0.0205

0.0230

0.0177

0.0085

0.0258

0.0211KL Divergence 0.0258

Fig. 27. Spherical domain pdf slices on MORPHO-MELENAUS.
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Reference

KL Divergence

KL Divergenceve ge ce

KL Divergence

KL Divergence

            Ours 
(4 steps after Reflow)

0.0006

0.0021

0.0036

0.0162

            Ours 
(8 steps after Reflow)

0.0006

0.0021

0.0036

0.0154

            Ours 
(256 steps after Reflow)

0.0012

0.0006

0.0019

0.0265

Fig. 28. Spherical domain pdf slices on SLIKE-BLUE.
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Reference

KL Divergence

KL DivergenceKL Divergegg nce

KL Divergence

KL Divergence

            Ours 
(4 steps after Reflow)

0.0268

0.0371

0.1324

0.1567

            Ours 
(8 steps after Reflow)

0.0254

0.0301

0.1033

0.1448

0.0376

0.0256

0.0798

0.1313

              Ours 
(256 steps before Reflow)

Fig. 29. Spherical domain pdf slices on BRUSHED-STEEL-SATIN-PINK.
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(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0029 0.0021

            Ours Spherical

0.0016

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0021 0.0019

            Ours Spherical

0.0012

(b) Multiple importance sampling 

0.0063

0.0052

Fig. 30. Results at 516 SPP Using BRDF-Only Sampling and MIS on ANISO-BRUSHED-ALUMINIUM.

(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0015 0.0024

            Ours Spherical

0.0005

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0018 0.0016

            Ours Spherical

0.0003

(b) Multiple importance sampling 

0.0007

0.0005

Fig. 31. Results at 516 SPP Using BRDF-Only Sampling and MIS on COPPER-PAPER-METAL.
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(a) Only BRDF sampling

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0577 0.1794

            Ours Spherical

0.0131

Reference             Ours Disk
     Neusample
Multilobe mixtures

Neusample
Normalizing flows

MSE 0.0441 0.0347

            Ours Spherical

0.0054

(b) Multiple importance sampling

0.0032

0.0024

Fig. 32. Results at 516 SPP Using BRDF-Only Sampling and MIS on COPPER-SHEET.

(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0031 0.0014

            Ours Spherical

0.0005

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0014 0.0006

            Ours Spherical

0.0003

(b) Multiple importance sampling 

0.0006

0.0004

Fig. 33. Results at 516 SPP Using BRDF-Only Sampling and MIS on GOLD-PAPER-METAL.
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(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0001 0.0001

            Ours Spherical

0.0001

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0001 0.0001

            Ours Spherical

<0.0001

(b) Multiple importance sampling 

0.0001

<0.0001

Fig. 34. Results at 516 SPP Using BRDF-Only Sampling and MIS on GREEN-MALACHITE.

(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0001 0.0001

            Ours Spherical

0.0001

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0001 0.0001

            Ours Spherical

0.0001

(b) Multiple importance sampling 

0.0001

0.0001

Fig. 35. Results at 516 SPP Using BRDF-Only Sampling and MIS on SILK-BLUE.
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(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0370 0.7514

            Ours Spherical

0.0075

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0629 0.4178

            Ours Spherical

0.0050

(b) Multiple importance sampling 

0.0048

0.0028

Fig. 36. Results at 516 SPP Using BRDF-Only Sampling and MIS on ANISO-MIRRO.

(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0003 0.0003

            Ours Spherical

0.0003

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0001 0.0001

            Ours Spherical

0.0001

(b) Multiple importance sampling 

0.0002

0.0001

Fig. 37. Results at 516 SPP Using BRDF-Only Sampling and MIS on ANISO-MORPHO-MELENAUS.

, Vol. 1, No. 1, Article . Publication date: September 2024.



28 •

(a) Only BRDF sampling 

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0009 0.0007

            Ours Spherical

0.0007

Reference             Ours Disk
     Neusample
Multilobe mixtures

    Neusample
Normalizing flows

MSE 0.0006 0.0005

            Ours Spherical

0.0005

(b) Multiple importance sampling 

0.0007

0.0006

Fig. 38. Results at 516 SPP Using BRDF-Only Sampling and MIS on BRUSHED-STEEL-SATIN-PINK.
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