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Fig. 1. Top Row: Equal-time comparison of our method against NBRDF [Sztrajman et al. 2021] and NeuSample [Xu et al. 2023] for sampling the specular metal
material COPPER-SHEET, under global illumination using BRDF sampling only. Bottom Row: (left) Rendering results for a rough dielectric material [Walter
et al. 2007] using our model and reference analytical sampling method at 2048 samples per pixel (spp). (right) PDF slices for a fixed incoming direction 𝜔𝑖 , that
is close to normal (top) and approaching the grazing angle (bottom).

Previous neural sampling methods, primarily using analytical lobe mixtures

and normalizing flows, often struggle with specular materials, particularly at

grazing angles. Furthermore, they are limited to reflection, and do not handle

transmission. Our key observation is that previous normalizing flows impose

significant restriction in their network architecture for easy computation of

the Jacobian. However, for low-dimensional BSDF sampling, the Jacobian

computation is not the bottleneck. Therefore, we propose to use diffusion

models to importance sample full BSDFs. Our method has two variants, one

for most reflective materials that learns a distribution on a disk, and the other

for extremely specular reflective materials and full BSDFs, which learns a

distribution on a sphere. Our equal-time evaluations show that our method

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1131-2/24/12.

https://doi.org/10.1145/3680528.3687684

outperforms normalizing flows and significantly surpasses them in certain

specular materials.

CCS Concepts: • Computing methodologies→ Ray tracing.

ACM Reference Format:
Ziyang Fu, Yash Belhe, Haolin Lu, Liwen Wu, Bing Xu, and Tzu-Mao Li.

2024. BSDF importance sampling using a diffusion model. In SIGGRAPH Asia
2024 Conference Papers (SA Conference Papers ’24), December 3–6, 2024, Tokyo,
Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3680528.

3687684

1 INTRODUCTION
In physically-based rendering, while analytical BSDFs (Bidirectional

Scattering Distribution Functions) [Cook and Torrance 1982; Walter

et al. 2007] often come with efficient sampling routines, they usu-

ally do not capture the nuanced behaviors of complex real-world

materials [Dupuy and Jakob 2018; Matusik et al. 2003]. On the other

hand, the tabular, measured BSDFs [Dupuy and Jakob 2018; Jakob
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et al. 2014] can be inefficient in terms of storage, consuming sub-

stantial GPU memory during rendering. Neural networks emerged

as an appealing solution to compress BSDFs [Bi et al. 2020; Fan

et al. 2022a,b; Guo et al. 2023; Sztrajman et al. 2021]. However, most

neural BSDFs do not come with an efficient sampling routine for

use in physically-based renderers. In this work, we demonstrate

that deterministic diffusion models [Song et al. 2021] can be a useful

option for importance sampling BSDFs.

Our work builds on the recent NeuSample [Xu et al. 2023] work

that shares the same motivation. Xu et al. investigated several gen-

eral purpose importance sampling strategies that can be used for

reflective Neural BSDFs. Among these, one option is to use a neural

network to predict a mixture of Gaussian lobes (Multilobe Mixtures

in Figure 1), and another option is to use normalizing flows [Kobyzev

et al. 2020] (Normalizing Flows in Figure 1). While normalizing flows

are considered the most accurate sampling methods by Xu et al.,

the flows usually put significant constraints on the network archi-

tectures so that the Jacobian can be easily computed for probability

density evaluation. Furthermore, existing methods focus on reflec-

tion and do not handle transmissive BSDFs.

Our key observation is that in a low-dimensional sampling prob-

lem like BSDF importance sampling, the Jacobian computation is

usually not a bottleneck, unlike machine learning applications. In-

spired by the recent progress in machine learning, we propose to

use a deterministic diffusion model to map a base distribution to

sampling directions. The deterministic diffusion model acts as an

ordinary differential equation (ODE) integrator that performs the

sampling transformation. This formulation results in a transfor-

mation that is expressive while also ensuring it is differentiable

and bijective. Furthermore, recent work on distilling diffusion mod-

els [Liu et al. 2023] allows us to fit a faster ODE integrator that

reaches the target with much fewer steps.

In this paper, we discuss the application of modern deterministic

diffusion models for BSDF sampling. This requires addressing a

few technical challenges, including defining a base distribution,

training data generation, the output domain of the diffusion model

and dealing with discontinuities and periodicity in the domains. We

also show a real-time implementation that can apply the diffusion

model BSDF sampling for 1024×1024 images at 60 frame per second

for 4 samples per pixel on an RTX 4090.

Our main contributions are:

(1) Compared to previous methods using normalizing flows, we

demonstrate that even when network size is small, the dif-

fusion model exhibits greater expressive power at the same

computational speed and achieves more accurate learning of

complex distributions.

(2) By extending the learning of the diffusion model to a unit

circle, we take into account the periodicity of the azimuth

in spherical coordinates, achieving high-quality, full BSDF

sampling for both reflection and transmission (Figure 1).

(3) We evaluate the advantages and disadvantages of sampling

within the projected hemisphere domain and spherical do-

main, designing specialized methods for each.

Based on our evaluation results, when the BSDF material is diffuse

or not extremely specular, we recommend sampling in the projected

hemisphere domain using fewer sampling steps. When the BSDF

material is a smooth mirror or metallic surface, we recommend

sampling in the spherical domain to better capture grazing angles,

while using more sampling steps to reduce fireflies.

2 RELATED WORK
BSDF representation and compression. Due to the high memory foot-

print required by tabulated BSDFmeasurements [Matusik et al. 2003;

Ngan et al. 2005], different models are fitted as a way of compres-

sion. Analytical BSDF models have been dominant in production

rendering [Burley 2012; Cook and Torrance 1982; He et al. 1991;

Heitz et al. 2015; Walter et al. 2007]. However, the extremely wide

variety of surface properties, such as highly specular highlights,

anisotropic features, layered structures, and iridiscence, make it

difficult to propose a general model. Moreover, it is especially chal-

lenging to handle specific measurement angles, such as grazing

angles. Neural representations for materials have lately emerged as

a promising direction, offering more flexibility while achieving com-

pactness. Among them, Sztrajman et al. [2021] encoded reflective

BSDFs using a lightweight neural network, and Fan et al. [2022b] fur-

ther incorporated layering operators using neural networks. Zheng

et al. [2021] used neural processes to compactly represent reflective

BSDFs while applying classifiers to tweak attributes and achieve

certain editability. We demonstrate our sampling method on the

RGL material dataset [Dupuy and Jakob 2018] which contains a

wide variety of measure materials.

BSDF Importance sampling Neural representations of BSDFs have

recently gained popularity. In comparison, importance sampling

these neural representations is less explored, which hinders their ap-

plication in production. Earlier work importance sampled measured

BSDFs by applying tabular solutions [Lawrence et al. 2004] but it

requires large amounts of storage. Many previous works fitted para-

metric analytical models [Sun et al. 2018], which by construction

provided closed-form importance sampling solutions. Sztrajman

et al. [2021] fitted a parametric Blinn-Phong model to estimate the

density for their learned neural encodings. Fan et al. [2022b] learned

to fit a proxy distribution composed of one isotropic Gaussian lobe

and one Lambertian lobe. Xu et al. [2023] proposed several im-

portance samplers and achieved state-of-the-art performance for

importance sampling neural materials. We take their work as the

main baseline. Their histogram mixture method relies on training

under direct supervision of a ground-truth probability density; there-

fore, we compare our method with their multi-lobe mixtures and

normalizing flow methods. We further cover transmittance and are

not limited to reflective BSDFs as in previous works.

Normalizing flows [Rezende and Mohamed 2015] are popular

models for density estimation and sampling (see surveys [Kobyzev

et al. 2020; Papamakarios et al. 2021] for an overview). The models

specify a series of bijective transformations 𝑇 to map a (usually

simple) base distribution 𝑝𝑧 (𝑧) to the target distribution 𝑝𝑥 (𝑥 ;𝜃 )
such that 𝑥 = 𝑇 (𝑧), where 𝑧 ∼ 𝑝𝑧 (𝑧). The key property is that

the transformation 𝑇 must be invertible and both 𝑇 and 𝑇 −1
must

be differentiable. Moreover, the Jacobian of 𝑇 is triangular form

to enable linear computational cost. Normalizing flows have been

applied to various rendering problems [Müller et al. 2019; Zheng
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and Zwicker 2019]. Xu et al. [2023] used a lighter-weight flow to

model the probability distribution of lighting directions for spatially

varying neural materials, conditioning on UV coordinates and view-

ing directions. Their work did not handle transmission due to the

projected hemisphere representation. Our work extends the domain

to the sphere and makes it possible to generalize to materials with

transmittance. More importantly, we show that diffusion models

allow us to construct more expressive mappings for sampling under

the same computation budget.

Diffusion model. Diffusion models have emerged as powerful deep

generative models [Yang et al. 2023]. The initial diffusion model [Ho

et al. 2020; Sohl-Dickstein et al. 2015] are probabilistic generative

models that degrade data by injecting noise, then learn to reverse

this process through Stochastic Differential Equations (SDEs). Later,

Song et al. [2021] demonstrated the existence of an ordinary differ-

ential equation (ODE), also named the probability flow ODE, whose

trajectories share the same marginal distributions as those of the

reverse-time SDE. Unlike SDE, ODE solvers follow deterministic

trajectories unaffected by stochastic fluctuations, typically converg-

ing much faster than stochastic counterparts, though with slighting

lower sample quality [Yang et al. 2023]. A large body of works [Al-

bergo et al. 2023; Heitz et al. 2023; Lipman et al. 2023; Liu 2022;

Liu et al. 2023] on faster diffusion samplers are based on solving

the probability flow ODE by constructing interpolations between

two distributions. However, most of these applications operate in

high-dimensional spaces and require large and complex networks,

focusing solely on sampling without exact likelihood calculation.

Our work demonstrates that for lower dimensional tasks requiring

exact PDF values, the deterministic diffusion model provides better

and more stable results compared to normalizing flows, using small

network size, which is suitable for BSDF sampling.

3 PRELIMINARIES
BSDF Importance Sampling. Given a BSDF 𝑓 (𝝎𝒐,𝝎𝒊), importance

sampling aims to construct a probability distribution 𝑝 (𝝎𝒐 |𝝎𝒊) ∝
𝑓 (𝝎𝒐,𝝎𝒊), where 𝝎𝒐 and 𝝎𝒊 are the outgoing and incoming direc-

tion respectively. To use 𝑝 for importance sampling, we need to be

able to draw samples from it and evaluate it for arbitrary incoming

and outgoing directions.

Deterministic diffusion models. We model 𝑝 using a linear interpo-

lation based deterministic diffusion model [Heitz et al. 2023; Liu et al.

2023]. These methods transform samples from a base distribution

𝑥0 ∼ 𝑝0 to a target distribution 𝑥1 ∼ 𝑝1 through an ODE

𝑑𝑥𝑡 = 𝐹 (𝑥𝑡 , 𝑡)𝑑𝑡, (1)

Here, 𝐹 is a continuous function that determines how samples 𝑥𝑡
are infinitesimally transformed via the diffusion process, and 𝑥𝑡 =

𝑡𝑥1 + (1 − 𝑡)𝑥0. The solution to this ODE [Heitz et al. 2023; Liu et al.

2023] is given by

𝐹 (𝑥𝑡 , 𝑡) = E [𝑥1 − 𝑥0 | 𝑥𝑡 , 𝑡] . (2)

The diffusion model 𝐷𝜃 (𝑥𝑡 , 𝑡,𝝎𝒊) is trained to learn 𝐹 . Once trained,

𝐷𝜃 can be used in place of 𝐹 to transform samples from 𝑝0 to 𝑝1 by

numerically integrating Equation (1).

In Section 1 of the supplementary material, we show an alternate

derivation for the expression above by modeling the distributions

at intermediate timesteps 𝑡 as a convolution of the base 𝑝0 density

and target density 𝑝1. The convolution perspective sheds light on

an important property of diffusion models: while in theory they can

model discontinuous distributions, but in practice, since we do not

explicitly integrate the Dirac deltas at the boundary, it will never
converge to the final distribution. In BSDF sampling, they struggle to

handle discontinuities at domain boundaries, which is problematic

near grazing angles–we fix this by changing the domain over which

the BSDF is defined.

ODE integration and Reflow. To draw a sample 𝑥1 ∼ 𝑝1, we start

with a sample 𝑥0 ∼ 𝑝0 and perform Euler integration which evolves

samples as 𝑥𝑡+Δ𝑡
= 𝑥𝑡 + 𝐷𝜃 (𝑥𝑡 , 𝑡,𝝎𝒊)Δ𝑡 , where Δ𝑡 is the step size.

This typically takes hundreds or thousands of integration steps,

which can be a bottleneck for real-time applications. We deal with

this by applying Reflow [Liu et al. 2023], a recent advance to accel-

erate diffusion model sampling. Reflow straightens the ODE trajec-

tories after training 𝐷𝜃 without modifying the marginals 𝑝0 and 𝑝1;

this is helpful since straighter trajectories require fewer integration

steps. Practically, when applied to BSDF importance sampling, we

have found that this reduces the integration steps from hundreds to

just few steps, with minimal quality loss.

Deterministic diffusion and bijective mappings. Deterministic dif-

fusion models form bijections between the source and target distri-

butions [Liu et al. 2023; Song et al. 2021]. This property allows us

to both draw samples from the target distribution, and importantly,

evaluate the probability density of the sampling process by comput-

ing its Jacobian. Since BSDFs are low-dimensional, calculating the

Jacobian of 𝐷𝜃 is not a computational bottleneck, enabling us to use

diffusion models for efficient importance sampling.

4 OUR METHOD
We first introduce our model architecture, its training, sampling,

PDF evaluation and distillation using Reflow (Section 4.1). Next, we

describe how our method handles importance sampling of reflective

BSDFs (or Bidirectional Reflection Distribution Functions, BRDFs)

by learning a distribution on a disk domain (Section 4.2). This works

well for non-specular BSDFs, however, due to discontinuities as

well as extremely high BSDF value at the boundary, distributions

on a disk can cause problems at grazing angles for specular BS-

DFs. To further support specular BSDFs, we learn distributions on

a sphere (Section 4.3); the change of domain removes boundary

discontinuities and reduces the BSDF values at grazing angles via

the cosine term, and also extends our sampling to full BSDFs with

both reflectance and transmission.

4.1 Architecture, Training, Inference, and Distillation
We first discuss our architecture (Figure 2). Next, we specify the

diffusion model loss function used for training. We then discuss

the generation of the training data given a BSDF 𝑓 , using a Markov

chain Monte Carlo sampler [Foreman-Mackey et al. 2013]. Subse-

quently, we discuss sampling and probability density function (PDF)

evaluation for both Monte Carlo integration and multiple impor-

tance sampling [Veach and Guibas 1995]. Finally, we discuss how
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Fig. 2. Our diffusion model architecture for BSDF sampling. 𝝎𝒐 and 𝝎𝒊 are
samples drawn from the BSDF 𝑓 (𝝎𝒐,𝝎𝒊 ) , and 𝒕 is the linear interpolation
term which follows the uniform distribution over the interval [0, 1].

we apply Reflow [Liu et al. 2023] to distill the model to be orders of

magnitude faster, without losing much quality.

The overall architecture (Figure 2) of our model remains con-

sistent whether applied to a BRDF or a full BSDF. Depending on

the sampling domain, some variations in the inputs and the loss

functions are used which are detailed in the Section 4.3.

Architecture and training. A diffusion model learns a mapping

between two distributions. The base distribution should be a dis-

tribution easy to sample from and compute the PDF. Since the

corresponding BSDF distributions can vary significantly in shape

and variance, a simple fixed base distribution like a Gaussian with

zero mean and unit variance is not an optimal choice.

We improve upon this by first training a small pretrain network

(Figure 2, top) to capture the rough shape of the BSDF distribu-

tion by predicting the parameters for a parametric base distribution

based on the input incident direction 𝝎𝒊 . For example, if a Gauss-

ian distribution is used as the base distribution, then the network

predicts the mean and covariance of the Gaussian. We specify the

base distributions we use in the following subsections. We train this

network by maximizing the log likelihood.

Next, the diffusion model maps the generated base distribution

to our target (Figure 2, bottom). The model network 𝐷𝜃 is used

to predict the slope 𝐹 in Equation (2). Recall that the slope 𝐹 is

defined as an expectation. For a given incoming direction𝝎𝒊 , we can

compute this expectation by generating a large number of samples

from three distributions, 𝑥0 ∼ 𝑝0,𝝎𝑜 ∼ 𝑝 (𝝎𝑜 | 𝝎𝑖 ), and 𝑡 ∼ 𝑈 (0, 1),
where 𝑝0 is the base distribution obtained from the pretrain network,

and 𝑈 (0, 1) is the uniform distribution on [0, 1]. We generate the

samples 𝑥𝑡 that follow the convolution distribution 𝑝𝑡 using the

relation 𝑥𝑡 = (1 − 𝑡)𝑥0 + 𝑡𝑥1, where 𝑥1 = 𝝎𝑜 .

Our diffusion model 𝐷𝜃 takes 𝑥𝑡 , 𝑡 , and the incoming direction

𝝎𝒊 for condition as inputs, and outputs the prediction for the ODE

slope 𝐹 . Following the approach by Heitz et al. [2023], the model

can be trained by the loss:

loss = ∥𝐷𝜃 (𝑥𝑡 , 𝑡,𝝎𝒊) − (𝑥1 − 𝑥0)∥2 (3)

Training data generation through Markov chain Monte Carlo sam-
pling. To generate the samples for training, previous methods [Xu

et al. 2023] first randomly select values for 𝝎𝒊 , and then use them

to sample online from the BSDF distribution 𝑝 (𝝎𝑜 | 𝝎𝑖 ) for each
training batch. This process, while feasible, is slow since it requires

building a high-resolution histogram and perform inverse CDF sam-

pling each time. Moreover, as we train multiple networks, reusing

the generated samples would be ideal.

We propose a faster method for sampling (𝝎𝒐,𝝎𝒊) from pre-

computed sample pairs, which are generated through an MCMC

sampler [Foreman-Mackey et al. 2013].

When the previous method randomly selected 𝝎𝒊 , it has inher-

ently defined a distribution 𝑝 (𝝎𝒊) based on the random distribution

it used. The sample pairs (𝝎𝒐,𝝎𝒊) generated by the online sampling

method will follow the joint distribution of 𝝎𝒐 and 𝝎𝒊 , given that

𝑝 (𝝎𝒐,𝝎𝒊) = 𝑝 (𝝎𝑜 | 𝝎𝑖 ) 𝑝 (𝝎𝒊).
We can use an MCMC sampler to sample from the 4D joint dis-

tribution 𝑝 (𝝎𝒐,𝝎𝒊), generating the sample pairs. We then draw

samples for each training iteration from these pairs. To achieve this,

we treat the BSDF 𝑓 (𝝎𝒐,𝝎𝒊) as a 4D unnormalized joint distribu-

tion, proportional to 𝑝 (𝝎𝒐,𝝎𝒊). We set 𝑝 (𝝎𝒊) to be uniform. During

training, we sample from these precomputed pairs by randomly

selecting the index of each pair.

We replace the previous complex process [Xu et al. 2023] of build-

ing histograms and inverse CDF sampling with an offline MCMC

sampling. During training, we require only random numbers gen-

eration each time, and the samples can be reused for all networks,

significantly accelerating our model’s training.

Sampling. Once we have the model 𝐷𝜃 , sampling is done in two

steps. First, we generate the 𝑥0 samples using the pretrain network

given incoming direction 𝝎𝒊 . Then, we simulate the ODEs using

Euler integration with a constant step size of Δ𝑡 = 1/𝑁 for 𝑁 steps.

Specifically, we compute:

𝑥𝑡+1/𝑁 = 𝑥𝑡 + 𝐷𝜃 (𝑥𝑡 ,𝑡,𝝎𝒊 )/𝑁 (4)

where 𝑡 ∈ {0, . . . , 𝑁−1}/𝑁 , with𝑥0 samples drawn from the pretrain

base distribution 𝑝0. The output 𝑥1 from the ODE solver follow the

distribution 𝑝 (𝝎𝑜 | 𝝎𝑖 ).

PDF evaluation. As the ODE values are predicted using a neural

network, their derivatives with respect to the input 𝑥𝑡 are easily

obtainable through automatic differentiation. Each discrete step in

the ODE can be regarded as an invertible transform. Hence, we can

compute the PDF by computing the Jacobian determinant through

network gradient for each step, without an extra marginalization

process. We accumulate Jacobian computed through the forward

ODE trajectory and then multiply it by the PDF 𝑝0 of the base

samples 𝑥0 to get the exact PDF value.

To support multiple importance sampling [Veach and Guibas

1995], it is necessary to revert the trajectory from the BSDF 𝑝 (𝝎𝑜 | 𝝎𝑖 )
back to the base 𝑝0. We can obtain the reverse trajectory by inte-

grating the ODE from 𝑡 = 1 to 𝑡 = 0. For specific PDF calculation

formulae, please refer to our supplementary materials.

Fast and Accurate Reflow. Reflow [Liu et al. 2023] needs samples

generated using a pretrained diffusion model for training. This in-

volves performing hundreds or thousands of Euler steps/network

evaluations to ensure near-convergence. Reflow then uses the sam-

ples generated from the diffusion model to straighten the ODE
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Method Original model Original model Original model model model 
Ground Truth 256 steps 8 steps 4 steps 8 steps 4 steps 

120 

,OO 

8 

KL Divergence 

KL Divergence 0.0051 0.0593 0.4098 0.0124 0.00138 

0.0021 0.0538 0.3865 0.0087 0.0089

Fig. 3. Comparison on METAL-PAPER-COPPER material between orginal
model and Reflow model with the same ODE sampling steps. The Reflow
model, with fewer ODE steps, is significantly faster than the original model
while accurately capturing the distribution.

trajectory, ultimately reducing the Euler steps for solving the ODE

to a single digit. We use tinycudann [Müller 2021] to accelerate

evaluation. While tinycudann restricts precision to float16, this is

acceptable since we mostly do basic addition, and we only generate

samples without PDF calculation.

By reusing the samples generated from MCMC, we can quickly

train several models. Consequently, we train two diffusion models

on a single pretrained network: a small network for the base weights

used for further training and a large network to better capture the

distribution. The large network is used solely for network inference,

generating ODE value predictions for online sampling. The small

network uses samples generated from large network for the Re-

flow process. Figure 3 demonstrates the effectiveness of the Reflow

method, significantly reducing the required sampling steps while

achieving accurate distributions.

4.2 BRDF on Projected Hemisphere
We first consider sampling for a BRDF without transmission. Our

goal is to sample proportional to the product of the BRDF defined

on the unit hemisphereH and the cosine foreshortening term.

Typically, we transform 𝝎 ∈ H to another domain that is more

convenient for sampling. An option is to project the unit hemisphere

H onto the unit diskH⊥. This requires multiplying by the Jacobian,

the inverse of the cosine term. This is equivalent to sampling the

projection of the BRDF (without cosine) onto the unit diskH⊥.
To fit BRDF distributions of unit-disk projections 𝝎⊥ ∈ H⊥, we

select a 2D Gaussian distribution as our base distribution 𝑝0. Our

pretrain network outputs a 2D mean location and a 2D standard

deviation for the two axes.

For most diffuse and (not extremely) specular materials, our ex-

periments in Figure 11 show that learning on the unit disk domain

is sufficient for BRDF sampling.

Problems with boundary discontinuities. We find that this ap-

proach fails near the boundary of the unit disk, making it difficult

to accurately learn the BRDF at grazing angles. As we approach the

grazing angle for 𝝎𝒊 , the energy over 𝝎𝒐 tends to be concentrated

at the boundary of the disk, see Figure 5. For materials like mirrors

or conductors with very low roughness the grazing angle contains

a significant amount of information. Thus, imperfect fitting leads

to fireflies, see Figure 4. For a perfect fit, the diffusion model would

need to model a discontinuous distribution that sharply transitions

Mean Square Error 0.0280 0.0384 0.0131 0.0032

Mean Square Error 0.0091 0.0042 0.0013 0.0003
Ground Truth Disk 32 spp Spherical 32 spp Disk 516 spp Spherical 516 spp

Fig. 4. Rendering results of COPPER-SHEET, an anisotropic conductor ma-
terial, only using our diffusion model BSDF sampling methods in the unit
disk domain and the spherical domain with 32 samples per pixel (spp) and
516 spp. Disk domain sampling suffers from fireflies at the grazing angles.

Fig. 5. PDF slices for a conductor material, comparing scenarios when the
incoming direction 𝝎𝒊 is near the normal (away from the grazing angle)
and close to the grazing angle. In the unit disk domain, the PDF performs
well outside the boundary but reaches extremely high values near the disk
boundary (see the color bar on the right). In contrast, within the spherical
domain, all PDF values remain within a reasonable range; however, the
distribution’s shape becomes considerably more complex.

from the boundary values to zero at the disks’ boundary, which it

cannot do, see Section 3. In practice, it approximates the discontinu-

ous jump a smooth transition, see the supplementary document for

more details.

4.3 BSDF on Spherical Domain
In the previous subsection, we saw that learning distributions on a

disk causes failures near the grazing angle. We fix these by learn-

ing a distribution on a sphere instead of a disk; this also extends

our method’s capability to handle full BSDF sampling including

reflection and transmission.

We denote the differential solid angle in spherical coordinates as

𝑑𝜔 = |sin𝜃 | 𝑑𝜃𝑑𝜙 , where 𝜔 is the solid angle, and 𝜃 ∈ [0, 𝜋], 𝜙 ∈
[−𝜋, 𝜋] are the elevation and azimuthal angles respectively. Thus,

importance sampling in the spherical domain can be written as

𝑝 (𝝎𝒐 | 𝝎𝒊) ∝ 𝑓 (𝝎𝒐,𝝎𝒊) · |cos𝜃 | · |sin𝜃 | .
The inclusion of both cos𝜃 and sin𝜃 ensures that the PDF value of

distribution is 0 at both normal incidence 𝜃 = 0 (as well as 𝜃 = 𝜋 for

BSDF on whole sphere) and at grazing angles 𝜃 = 𝜋/2 (for BRDF on
hemisphere), which satisfies the convolution distribution property.

The latter also ensures that extremely high values near grazing

angles are removed since cos𝜃 approaches zero.

The azimuthal angle requires special care; as we approach its

boundary, near 𝜙 = −𝜋 and 𝜙 = 𝜋 , 𝑝 is non-zero. However, it is

periodic, with a period of 2𝜋 . We exploit this by joining the two

endpoints of the domain, transforming it into a unit circle, and
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learn 𝑝 directly on this domain, thereby making the distribution

continuous on 𝜙 .

Let 𝑝 (𝜙) denote the marginal distribution of 𝜙 . It satisfies 𝑝 (𝜙) =
𝑝 (𝜙 + 2𝜋) and is normalized

∫ 𝜋

−𝜋 𝑝 (𝜙)𝑑𝜙 = 1. These make it a

wrapped probability distribution on a unit 1-sphere. Its CDF, denoted

as 𝑐 (𝑧), is given by 𝑐 (𝑧) =
∫ 𝑧

−𝜋 𝑝 (𝜙)𝑑𝜙 , where 𝑧 = (𝑧 mod 2𝜋) − 𝜋 .

Consequently, since the definitions of PDF and CDF remain con-

ceptually unchanged in the range [−𝜋, 𝜋], our derivations in sup-

plementary materials for Equation 2 still hold within the periodic

domain, and the ODE for 𝜙 is given by

𝑑𝑥𝑡

𝑑𝑡
= E [𝑥1 − 𝑥0 | 𝑥𝑡 , 𝑡] ,

where 𝑥𝑡 = (1−𝑡)𝑥0 +𝑡𝜙 , and 𝑥0 is sampled from a base distribution

𝑝0, which also needs to be a wrapped probability distribution due

to the constraints of the unit circle. Importantly, the term 𝑥1 − 𝑥0 is

not measured using Euclidean distance, but rather using geodesic

distance on the unit circle. The geodesic distance is straightforward

to compute on a unit circle, and it is given by𝑑 = (𝑥1−𝑥0) mod 2𝜋−
𝜋 , which ensures 𝑑 ∈ [−𝜋, 𝜋].

The architecture used for training is consistent with the one pre-

sented in Figure 2 albeit with a few modifications. For the pretrained

base distribution, we opt for a combination of two independent 1D

distributions. For the elevation 𝜃 , we use a Gaussian distribution.

For the azimuth 𝜙 , due to its periodic nature, we use the von Mises

distribution (also known as the circular normal distribution); for it

the pretrained network predicts its mean 𝜇 and its concentration

𝜅 ∈ [0, +∞], which is analogous to the variance in a Gaussian.

When training the diffusion model, we modify the input to ensure

that 𝜙 remains constrained on the unit 1-sphere. This is achieved

through a simple positional encoding, setting𝜙𝑖𝑛𝑝𝑢𝑡 = (sin𝜙, cos𝜙).
Additionally, the loss function computes the geodesic distance for

𝜙 , and the treatment of 𝜃 remains unchanged.

5 RESULTS
We implemented our method in PyTorch [Paszke et al. 2019] and

integrated it into Mitsuba 3 [Jakob et al. 2022]. We also implemented

a real-time megakernel path tracer with inline neural network in-

ference in a custom renderer using the Vulkan API with hardware-

accelerated ray tracing. Our training code is written in PyTorch and

we use tinycudann [Müller 2021] to accelerate training during Re-

flow. Automatic differentiation was used for Jacobian computation

in PyTorch, while it was manually implemented in Vulkan.

Our model’s training process is designed to be independent of

the BSDF’s nature, whether measured or as a neural representation.

It solely requires the BSDF values, along with incident and outgoing

directions, to directly learn the distribution.

Architecture details. For the incoming direction 𝝎𝒊 , which serves

as the conditional vector, we apply positional encoding before in-

putting it to the network. For the pretraining network, we use the

same network size for both the disk and spherical domains: a very

small multilayer perceptron with one hidden layer containing 16

neurons. For the actual diffusion model network, we observed that

learning in the spherical domain is more challenging than in the

disk domain. Consequently, we use an MLP with 3 hidden layers

and 32 neurons for the disk domain, and an MLP with 4 hidden

layers and 32 neurons for the spherical domain.

Baselines. For the method using neural network sampling, we

compare our method with approaches presented in NBRDF [Sz-

trajman et al. 2021] and NeuSample [Xu et al. 2023]. NBRDF fits

a parametric Blinn-Phong model, which is isotropic. The first ap-

proach in NeuSample employs a combination of a Lambertian lobe

and Gaussian mixtures to predict the target distribution. Network

outputs the parameters for each Gaussian and the weights for each

lobe. The second approach uses Normalizing Flows to map between

a base distribution and the target distribution. This architecture is

similar to ours, as it also involves pretraining the base distribution

and then performing normalizing flow sampling. However, their

implementation is limited to the unit disk domain and supports only

BRDF. For comparison, we naïvely extended their output domain

from the disk to the spherical domain without accounting for the

periodicity of 𝜙 . Additionally, we compared our method with the

sampling procedure provided by the RGL dataset [Dupuy and Jakob

2018], which uses a specially designed compressed lookup table.

Materials for BSDF sampling. For BRDF sampling, we evaluate

on the RGL dataset [Dupuy and Jakob 2018] which includes a di-

verse collection of complex, real-world BRDFs. This dataset presents

particularly challenging materials, especially at grazing angles. No-

tably, certain neural compressed BRDFs for RGL dataset [Sztrajman

et al. 2021], demonstrate significant difficulties in accurately simu-

lating materials like COPPER-SHEET at grazing angles, often failing

entirely. To emphasize our model’s enhanced ability to effectively

handle grazing angles, and only for better comparison purposes, we

train directly on these complex original BRDFs. This does not imply

that our model is limited to measured BRDFs. On the contrary, by

addressing situations more complex than neural BRDFs, we high-

light our model’s superior capability to accurately sample grazing

angles and complex BRDFs, as Figure 9 shows.

For BSDFs, due to the lack of a measured BSDF dataset or neural

BSDF work with much more complex distributions, and the absence

of specifically designed samplingmethods for BSDFs, we only test on

rough dielectric [Walter et al. 2007] and Disney BSDFs [Burley 2015].

Figure 6 compares our method with the analytical sampling solution.

We demonstrate our capability for accurate full BSDF sampling, and

shows the potential for sampling more complex BSDFs without

perfect analytical solution.

Rendering results and quantitative metrics for diverse materials

(synthetic and real-world captured) under various lighting condi-

tions (point and environmental) are presented in the supplementary

materials. We refer readers to the supplementary materials for a

comprehensive evaluation.

Time statistics. Table 1 shows the sampling time using our method

and NeuSample on the same pytorch platform and our method solely

on Vulkan using a single RTX 4090 GPU. Table 2 further shows the

actual rendering FPS using Vulkan. Notably, our real-time imple-

mentation has achieved remarkable performance improvements.

This makes it a viable option for real-time rendering of neural BSDF

sampling. Training times per material averaged 3 hours for disk

domain and 3.5 hours for spherical domain. Detailed timings for

each step are provided in the supplementary material.
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Mean Square Error 0.0022 0.0028

Ref. (8192 spp) Ref. (128 spp) Ours (128 spp) Ref. (2048 spp) Ours (2048 spp)

0.0001 0.0003

Mean Square Error 0.0016 0.0016 0.0001 0.0002

Fig. 6. The rendering results of two rough dielectric materials [Walter et al.
2007] with roughnesses 0.3 (top) and 0.5 (bottom) using our diffusion model
with 8 sampling steps. We compare our method with the analytical sampling
of rough dielectric in Mitsuba 3 (Ref.) and the results are comparable.

Table 1. Running times including generating samples and calculating their
PDF of NeuSample and our method (4 sampling steps) on disk and spherical
domains. The NeuSample methods are implemented purely using PyTorch.
This table presents the sampling times (ms) for generating 1024x1024 reso-
lution images with 1 sample per pixel.

Time

(ms)

NeuSamp.

Mixt.

lobes

NeuSamp.

Norm.

Flows

Ours

Torch

Disk

Ours

Torch

Spher.

Ours

Vulkan

Disk

Ours

Vulkan

Spher.

Running 13.89 52.66 52.08 72.57 4.30 5.77

Table 2. Comparison of FPS (frames per second) and storage size between
RGL Tabular and our method using RTX 3070 and RTX 4090 GPUs on
anisotropic materials. RGL Tabular is faster on the RTX 4090 compared to
3070, likely due to the greatly increased L2 cache size of the 4090 (4090 has
72 MB L2 cache while 3070 only has 4 MB). On RTX 4090, we tested on 4
samples per pixel because 1 samples per pixel will be CPU-bounded.

FPS/Size RGL Tabular Ours Disk Ours Spher.

RTX 3070 (1 spp) 44.2 52.7 45.0

RTX 4090 (4 spp) 122.7 76.5 64.3

Size (float nums.) 282880 3328 4256

Better expressiveness and robustness. Compared to the two neural

sampling methods in NeuSample, our model demonstrates greater

robustness and expressiveness formostmaterials. Figure 11(a) shows

the comparison between our method and the NeuSample baselines.

Our model is more flexible. Unlike mixture lobes and normalizing

flows, having their expressive capabilities constrained by predefined

parameters, our model does not impose such limitations during

training. Expressiveness is adjustable by varying sampling steps.

In Figure 9, we selected four materials for detailed demonstration.

Previous neural sampling methods struggled with these kinds of

specular and anisotropic materials, but our approach shows sig-

nificant improvement in these cases. Overall, the disk domain has

the lowest Mean Square Error (MSE), indicating its easier-to-learn

characteristics. However, at grazing angles, the spherical domain

performs better, exhibiting fewer fireflies and demonstrating its

ability to handle discontinuities.

Figure 8 demonstrates our method’s effectiveness in scenes with

diverse materials. Results indicate the superior stability and quality

of our methods in complex material compositions. While NBRDF

struggles with highly anisotropic materials and NeuSample shows

limitations for specular materials, our approach exhibits robust

performance across all material types. Furthermore, we showcase

0.0007MSE

Reference Ours (4steps/32spp) Tabular 32spp Ours (4steps/512spp) Tabular 512spp

Fig. 7. Rendering results using our method (disk 4 steps) and RGL tabular
methods under direct illumination with only BRDF sampling.

near-identical results to ground truth sampling for transmissive

BSDFs, underscoring the accuracy of our method.

In Figure 11(a), we present the graph of samples per pixel versus

log(MSE). Theoretically, when we can perfectly importance sample

the distribution, the result should be a straight line. For diffuse

materials, our model shows little difference from the NeuSample

methods. However, as the material becomes more complex and

specular, the noise from learning failures increases, causing the

graph to deviate. The NeuSample method exhibits instability with

specular materials. When the material becomes highly specular, our

method significantly outperforms theirs.

Better compression.We also compare our method with the tabular

approach using the RGL dataset. Figure 7 shows that our sampling

results are comparable to the tabular method, while achieving sig-

nificant compression in storage space.

Table 2 shows the frames per second of our Vulkan renderer and

the compression comparison between our method and the RGL tabu-

lar sampling for anisotropic materials. We separately calculated the

number of floats used for the RGL tabular sampling and compared

it with our method. Our model achieves a compression ratio of 85×
for disk and 66.5× for spherical. If considering that our renderer

uses float16, the compression ratio would be even higher.

Spherical vs. Disk. Figure 4 shows that the unit disk sampling

exhibits noticeable fireflies at grazing angles, whereas the spherical

sampling method effectively mitigates these artifacts. The results of

Figures 9 and 11 show that, due to the more complex distribution

on a spherical domain, the MSE is higher compared to the disk

domain. Our experiments in Figure 10 show that projecting onto

the unit disk makes the learning easier except the part near the disk

boundary, since the general KL Divergence is smaller. One intuitive

explanation is that most BRDFs are centered around an outgoing

direction 𝜔𝑜 , with energy spreading relatively evenly around it. The

results are more uniformly distributed in all directions compared to

the spherical domain, where the curvature causes the distribution

to take on a more complex shape, like Figure 5 shows.

Therefore, we recommend using the disk domain for most com-

plex BRDFs. However, for learning BSDFs or materials in highly

specular situations where one wants to avoid excessive fireflies, we

suggest using the spherical domain.

6 CONCLUSION AND FUTURE WORK
We propose a more expressive and robust method for BRDF impor-

tance sampling and extend our model to full BSDF by supporting

diffusion model learning on the spherical domain.

Better base distribution. For spherical domain learning, we find

that using von Mises distribution as the base distribution can lead

to numerical issues, when using float16 for rendering extremely

7
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Ground Truth NBRDF NeuSample   Multilobe Mixtures

Ours Disk Ours Spherical
MSE / MAE / SSIM 0.0379 / 0.0441 / 0.7478 0.0593 / 0.0231 / 0.8054

0.3330 / 0.0227 / 0.8045 0.0017 / 0.0191 / 0.8333 0.0054 / 0.0214 / 0.8261

Ground Truth Reference (128 spp) Ours (128 spp)

MSE / MAE / SSIM 0.000788 / 0.01521 / 0.8477 0.000794 / 0.01489 / 0.8548

NBRDF

(a) Real-world captured materials scene results under environmental lighting using various BRDF sampling methods.

(b) Disney BSDFs scene results under environmental lighting using our BSDF sampling and analytical sampling methods.

NeuSample Normalizing Flows

Fig. 8. (a) Comparison of our method with NBRDF [Sztrajman et al. 2021], NeuSample [Xu et al. 2023], under the same number of samples per pixel for
scenes with multiple materials. (b) Our method fitted to sample Disney BSDFs [Burley 2015], and compared to the analytical sampling routine. We measure
numerical errors using Mean Square Error (MSE), Mean Absolute Error (MAE), and Structural Similarity Index Measure (SSIM)

specular materials like ANISO-MIRROR. Exploring a simpler and

samplable base distribution on the unit sphere is worthwhile.

Perfect transmissive materials. While our method demonstrates

robust performance across a wide spectrum of materials, it shows

increased noise for near-perfect transmissive materials due to nu-

merical instability. Extremely large PDF values in these cases lead to

poor MCMC sample quality. The highly concentrated nature makes

even slight sample deviations result in severe fireflies.

Extension to SVBRDF. We only have tested and evaluated our

model on 4D BSDFs; while theoretically straightforward, extend-

ing to SVBRDF is more challenging due to higher dimensions of

conditions. Network capacity is the primary constraint; larger net-

works can effectively learn SVBRDFs, but rendering efficiency de-

mands necessitate network compression, posing the main obstacle

for SVBRDF extension. A possible approach involves constraining

model flexibility by predefining sampling steps, learning the com-

plete diffusion model with a larger network, then storing specific

steps using a more compact network.

Other applications. Finally, we believe our method is not limited to

BSDF sampling. We demonstrated that even with a smaller network,

the diffusion model can achieve more stable and expressive results

to normalizing flows. Our approach may also provide insights for

other importance sampling problems in lower dimension, such as

path guiding, complex luminaire sampling, and portal sampling.

8
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Ground Truth
Multilobe Mixtures

         Disk
Normalizing Flows
           Disk

Diffusion Model
  Disk (4 steps)

Mean Square Error 0.0122 0.0185 0.0066 0.8227 0.2044 0.0078

Multilobe Mixtures
    Spherical

Normalizing Flows
       Spherical

 Diffusion Model
Spherical (4 steps)

0.0041  0.0037 0.0032 0.0524 0.0101 0.0032

0.0179 0.0133 0.0066 0.1859 0.0507 0.0072

0.0235 0.0129 0.0071 0.0355 0.0279 0.0035

0.3856 0.2528 0.0314 4.0900 0.7842 0.0620

4.8886 0.0882 0.0062 0.0832 0.0557 0.0045

0.1334 0.3259 0.0348 7.1656 0.2374 0.0253

 0.0174  0.0195 0.0125 0.6283 0.0404 0.0089
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Fig. 9. An equal time Rendering results and grazing angle slices of four specular materials using various BRDF sampling methods. All renderings are
performed using only BRDF sampling and global illumination. We set the time of our model on disk domain with 32 spp as baseline.
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Reference     NeuSample
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Fig. 10. PDF slices of five materials using various BRDF sampling methods. Each column represents the predicted PDF of one fixed outgoing direction, ranging
from near the normal to near the grazing angle. For each material, the top row is the disk domain, and the bottom row is the spherical domain.

(a) : log-log plot of pixel MSE w.r.t. samples per pixel (b) : Scene with multiple real-world materials.

Diffuse Materials Specular Materials

Ours disk domain (128 spp)

Ours disk domain (128 spp)

Fig. 11. (a) Convergence graphs of different types of materials, gradually transitioning from diffuse to specular. (b). Scenes with multiple real-world materials
of our methods with same spp under point lighting.
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